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Software can improve the efficiency of our energy system

Demand side

Building efficiency -
Demand response -

~N 7

“Smart Grid”

|

Business and arbitrage
- Price forecasting

Supply side

Electric load forecasting
Wind power forecasting
Solar power forecasting
Predictive maintenance



Topics

1)What is the smart grid and why do we need it?
2)What is machine learning and data analytics?

3)What are the computer science and software challenges for
implementing the smart grid?

4)What have companies done so far to address this challenge?



Brief history of the electric grid

1960s: regional interconnects 1970s-1990s: increasing
created in the US designed for demand results in
economies of scale blackouts and brownouts

1886: first AC power Late 1960s: electricity

grid system installed in grid reached majority 1978: independent
Great Barrington, of population of power producers
Massachusetts developed countries given access to the

grid

1992: Congress Late 20" century: electricity
demand patterns well established

— domestic heating and air
conditioning led to daily peaks led
to installation of peaking plants.

215t century:
developing countries deregulates whole-

pioneer smart grid ~ sale power
development generation systems



The current electric grid has some severe limitations

- Low utilization of peaking generators leads to unnecessary redundancy

- Metering capabilities limit the degree to which price signals could be
propagated through the system.

- Difficult to incorporate intermittency of renewable energy and ensure
reliability

- Centralized power stations may increase vulnerability to terrorist attacks

Some precursors to the smart-grid attempted to address
these issues:

- 1980s: automatic meter reading to monitor loads from large customers
- Prevents physical trip to read meter
- Allows for more accurate monitoring data
- 1990s: advanced metering infrastructure
- Provide information about usage at different points in time
- Allows for 2-way communication with meter so that information
such as time-of-use pricing can be sent to the home



The smart grid
doesn’t refer
to a specific
technology,
but rather a
set of related
technologies
that include
both physical
infrastructure
and digital
applications
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Image source: http://www.renesas.eu/ecology/eco_society/smart_grid/



Although there are numerous infrastructure and hardware
challenges to implementing the smart grid, this talk
emphasizes the role of software in the smart grid system

https://www.youtube.com/watch?v=t50zUlpQWpM

Progress in infrastructure upgrades has been slow in part due
to strong opposition:

Concerns over privacy

Concerns about fair availability of electricity

Complex rate systems reduce clarity and accountability
Remotely controlled kill-switch incorporated into smart meters



Software can be used to circumvent some “hardware”

challenges

Problem:
Want to know how much energy
each appliance is using

/

Hardware solution:
Attach monitors to each
appliance

i) bidgely

- Recently raised $16 million

- Has ~ 20 large utility clients,
including TXU, ComEd, London
Hydro

https://www.youtube.com/watch?

v=MSvzNITlcfw

~

Software solution:

Measure electricity use at one point, then apply
machine learning algorithm to disaggregate into
components.
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Image: http://smartmicrogrid.blogspot.com/2013_11_01_archive.html



Machine Learning allows us to process large data sets with
less human input

p——— Introductory video:
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su09/lecturenotes/pca.html part-3-machine-learning explained-reg-analysis-0316



Distributed computing makes handling these large data sets
possible

Commercial services make
(b) Procassor distributed computing accessible
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Demand-side management

Traditional grid:
Supply is adjusted to match

demand
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Future grid:

Demand should be made more adaptive to supply

conditions

Can be passive (automatic) or active (ask user to

turn off device)

Conservation /
Efficiency

Howr of Day

Hour of Day

Load Shifting

http://www.powerwise.gov.ae/en/research/programmes-
projects/demand-side-management.htmi




Demand-side management consists of elements with varying
levels of technical complexity and user participation

Passive: Utility Active: Utility asks commercial

automatically cuts off and industrial customers to

certain loads when curtail usage during peak hour

demand is high. Better software and offer compensation in
can make these return

processes more
automatic and
efficient.

Price-based: real-time pricing
discourages customers from using
electricity when prices are high



Electric vehicles can act as both a demand-side and supply-
side resource
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Fig. 1. Hlustrative schematic of proposed power line and wireless control connections between vehicles and the electric power grid.

Software challenges:

- Predicting individual users’ EV charging needs and designing algorithms to
optimize charging cycles of EVs based on users’ predicted needs

- Predicting aggregate EV charging demands at different points in the network

- Designing decentralized control mechanisms that coordinate the movement of
EVs to different charge points



Virtual power plants allow coordination of numerous smaller
grid components, enabling them to participate in the market as
one power plant

Biomass power plant
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http://www.slideshare.net/statkraft/statkrafts-virtual-power-plant-in-germany



This makes VPPs visible to grid operators, allowing them to

displace conventional capacity
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Fig. 1 Relative levels of system capacity

Pudjianto et al., 2007

Current distributed energy
resources are not visible to
system operators.

Can displace energy
produced by fossil fuels,
but cannot displace
capacity

VPPs allow distributed
generation to be
represented on the
system.

Can trade in wholesale
energy markets.

Less capacity built 2
reduced costs!



Software for VPPs is already in use, but several key
challenges remain

https://www.youtube.com/watch?v=sNVrDwRQn3Q

Software challenges:

Designing models of different VPP actors and processes in order to optimize
technical arrangements needed to form and manage VPPs.

Designing online mechanisms to form statistically correct trust measures for
energy providers

Designing search algorithms and negotiation mechanisms for individual actors to

agree on which VPP to form at different points in time and how to share the
profits



Data analytics can help people purchase/sell energy

“Decision Intelligence for the Wholesale
Electricity Market”

-. ’ vyanctenrec https://www.youtube.com/watch?
| v=mH3gxQ8s4ZI

For buyers:

- Recommendation engine for energy customers who participate in deregulated
electricity markets (PJM, NYISO, MISO, ERCOT)

- Build market price forecasts

- Load forecasting for industrial customers so they can reduce usage during peak
hours

For sellers:
- Price forecasting for renewable generators to sell in day-ahead markets



Self-healing networks: envisioning an energy internet

Responding in real-time ABB dfeveloped_ software that tracks grid flows and
feeds information to control systems that can
power and productiviy AR IR I respond within a minute. They claim they can make
for a better world "l. I. . .
outages 100 times less likely.

Predictive maintenance _ o , ,
Real-time data and predictive algorithm allows grid

G<: operators to identify high-risk assets and perform
I OT maintenance before they fail. Helps operators
prioritize maintenance.

Also see: Rudin et al., 2012: Machine Learning for the New York City Power Grid



Many startups offer customer engagement products

Customer engagement platform:
- Show customers personalized energy and billing

O P Q3W E R iI?r:lj’iiIfleh:;‘tisfac‘tion and loyalty

- Market products specific to the customer
- Drive actions with rewards

) bidgely
EnergyHub

ONZO

FUEL



News room > News releases >

Machine Learning Helps IBM Boost Accuracy
of U.S. Department of Energy Solar Forecasts
by up to 30 Percent

Makes Solar Forecasts Available to States to Advance Integration of Solar
Power into the Nation’s Energy Pipeline

https://www.youtube.com/watch?v=cj2RXjvRKOA

“Big data meets science”

Self-learning weather Model and renewable forecasting Technology (SMT)
Combine machine learning techniques with “domain models” ie. Meteorological

models, atmospheric models




The smart grid in action: the Los Angeles Smart Grid Project
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Figure 2. Dynamic Demand Response (D2R) lifecycle in the University of Southern California (USC) campus
microgrid using our cloud-based software platform. This lifecycle forms an observe, orient, decide, and act

(OODA,) loop.

Source: Simmhan et al., 2013



The smart grid in action: the Los Angeles Smart Grid Project
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The smart grid is not just an infrastructure challenge,
but also a data analytics and software challenge



